Produkt zum Begriff Machine Learning:
-
Zeigermann, Oliver: Machine Learning - kurz & gut
Machine Learning - kurz & gut , Der kompakte Schnelleinstieg in Machine Learning und Deep Learning Die 3. Auflage des Bestsellers wurde ergänzt durch Kapitel zu Large Language Models wie ChatGPT und zu MLOps Anhand konkreter Datensätze lernen Sie einen typischen Workflow kennen: vom Datenimport über Datenbereinigung, Datenanalyse bis hin zur Datenvisualisierung Nicht nur für zukünftige Data Scientists und ML-Profis geeignet, sondern durch seine durchdachte Didaktik auch für Interessierte, die nur am Rande mit ML zu tun haben, wie z.B. Softwareentwickler*innen Machine Learning beeinflusst heute beinahe alle Bereiche der Technik und der Gesellschaft. Dieses Buch bietet Interessierten, die einen technischen Hintergrund haben, die schnellstmögliche Einführung in das umfangreiche Themengebiet des maschinellen Lernens und der statistischen Datenanalyse. Dabei werden alle wesentlichen Themen abgedeckt und mit praktischen Beispielen in Python illustriert. Verwendet werden dabei die Bibliotheken Scikit-Learn, Pandas, NumPy, TensorFlow und Keras. Nach der Lektüre dieses Buchs haben Sie einen Überblick über das gesamte Thema und können Ansätze einordnen und bewerten. Das Buch vermittelt Ihnen eine solide Grundlage, um Ihre ersten eigenen Machine-Learning-Modelle zu trainieren und vertiefende Literatur zu verstehen. Die aktualisierte 3. Auflage behandelt jetzt auch Large Language Models wie z.B. ChatGPT und MLOps. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen
Preis: 19.90 € | Versand*: 0 € -
Raschka, Sebastian: Machine Learning Q and AI
Machine Learning Q and AI , "An advanced exploration of machine learning and AI, with each chapter asking and answering a question from the field. Divided into five sections: deep learning and neural networks; computer vision; natural language processing; production and deployment; and predictive performance and model evaluation"-- , >
Preis: 37.30 € | Versand*: 0 € -
Praxiseinstieg Machine Learning mit Scikit-Learn, Keras und TensorFlow (Géron, Aurélien)
Praxiseinstieg Machine Learning mit Scikit-Learn, Keras und TensorFlow , Aktualisierte und erweiterte 3. Auflage des Bestsellers zu TensorFlow und Deep Learning Behandelt jetzt viele neue Features von Scikit-Learn sowie die Keras-Tuner-Bibliothek und die NLP-Bibliothek Transformers von Hugging Face Führt Sie methodisch geschickt in die Basics des Machine Learning mit Scikit-Learn ein und vermittelt darauf aufbauend Deep-Learning-Techniken mit Keras und TensorFlow Mit zahlreiche Übungen und Lösungen Maschinelles Lernen und insbesondere Deep Learning haben in den letzten Jahren eindrucksvolle Durchbrüche erlebt. Inzwischen können sogar Programmierer, die kaum etwas über diese Technologie wissen, mit einfachen, effizienten Werkzeugen Machine-Learning-Programme implementieren. Dieses Standardwerk verwendet konkrete Beispiele, ein Minimum an Theorie und unmittelbar einsetzbare Python-Frameworks (Scikit-Learn, Keras und TensorFlow), um Ihnen ein intuitives Verständnis der Konzepte und Tools für das Entwickeln intelligenter Systeme zu vermitteln. In dieser aktualisierten 3. Auflage behandelt Aurélien Géron eine große Bandbreite von Techniken: von der einfachen linearen Regression bis hin zu Deep Neural Networks. Zahlreiche Codebeispiele und Übungen helfen Ihnen, das Gelernte praktisch umzusetzen. Sie benötigen lediglich etwas Programmiererfahrung, um direkt zu starten. Lernen Sie die Grundlagen des Machine Learning anhand eines umfangreichen Beispielprojekts mit Scikit-Learn Erkunden Sie zahlreiche Modelle, einschließlich Support Vector Machines, Entscheidungsbäume, Random Forests und Ensemble-Methoden Nutzen Sie unüberwachtes Lernen wie Dimensionsreduktion, Clustering und Anomalieerkennung Erstellen Sie neuronale Netzarchitekturen wie Convolutional Neural Networks, Recurrent Neural Networks, Generative Adversarial Networks, Autoencoder, Diffusionsmodelle und Transformer Verwenden Sie TensorFlow und Keras zum Erstellen und Trainieren neuronaler Netze für Computer Vision, Natural Language Processing, Deep Reinforcement Learning und generative Modelle , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Auflage: 3. Auflage, aktualisiert und erweitert, Erscheinungsjahr: 202309, Produktform: Kartoniert, Titel der Reihe: Animals##, Autoren: Géron, Aurélien, Übersetzung: Rother, Kristian~Demmig, Thomas, Auflage: 23003, Auflage/Ausgabe: 3. Auflage, aktualisiert und erweitert, Seitenzahl/Blattzahl: 876, Abbildungen: komplett in Farbe, Keyword: AI; Algorithmen; Artificial Intelligence; Data Science; Deep Learning; Geron; KI; Künstliche Intelligenz; Machine Learning; Maschinelles Lernen; Neuronale Netze; NumPy; Python; Statistische Datenanalyse; TensorFlow; matplotlib; scikit-learn, Fachschema: Data Mining (EDV)~Programmiersprachen, Fachkategorie: Programmier- und Skriptsprachen, allgemein, Warengruppe: HC/Programmiersprachen, Fachkategorie: Data Mining, Thema: Verstehen, Text Sprache: ger, Originalsprache: eng, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Dpunkt.Verlag GmbH, Verlag: Dpunkt.Verlag GmbH, Verlag: O'Reilly, Länge: 239, Breite: 163, Höhe: 44, Gewicht: 1408, Produktform: Klappenbroschur, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Vorgänger: 2406797, Vorgänger EAN: 9783960091240 9783960090618, andere Sprache: 9781098125974, Herkunftsland: DEUTSCHLAND (DE), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Kennzeichnung von Titeln mit einer Relevanz > 30, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0070, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel,
Preis: 54.90 € | Versand*: 0 € -
Learning Resources Spielset - Zählen lernen, mehrfarbig
Mit dem Spielset von Learning Resources erleben Kids ab drei Jahren die Freude am Erlernen neuer Fähigkeiten im Zählen und der Farberkennung. Spielset - Zählen lernen von Learning Resources mit 10 Geschenken von 3 bis 8 Jahren geeignet In jeder der farbenfrohen, nummerierten Schachteln finden Kinder eine lustige Überraschung - von einem kleinen blauen Roboter über ein hochfliegendes Flugzeug bis hin zu einem freundlichen Teddybären. Insgesamt gibt es 10 Geschenke, die Kinder immer wieder aus- und einpacken können. Neben der Entwicklung feinmotorischer Fähigkeiten bei jedem Auspacken lernen sie auch, Farben und Zahlen zu erkennen. Sie können das Spielzeug nach den Farben der Schachteln sortieren, ihre Geschenke zählen oder die Punkte auf den Deckeln mit den Zahlen auf der Vorderseite der Schachteln abgleichen. Kinder können die Geschenke aus dem Set auch für fantasievolle Versteckspiele oder als lustige Ergänzung zu ihren Rollenspielen verwenden.
Preis: 33.29 € | Versand*: 1.99 €
-
Ist Machine Learning bereits künstliche Intelligenz?
Machine Learning ist ein Teilgebiet der künstlichen Intelligenz. Es befasst sich mit der Entwicklung von Algorithmen und Modellen, die es Computern ermöglichen, aus Daten zu lernen und Vorhersagen zu treffen. Künstliche Intelligenz umfasst jedoch auch andere Bereiche wie Expertensysteme, natürliche Sprachverarbeitung und Robotik.
-
Wie kann Machine Learning zur Automatisierung von Prozessen in der Industrie beitragen?
Machine Learning kann zur Automatisierung von Prozessen in der Industrie beitragen, indem es repetitive Aufgaben wie Qualitätskontrolle oder Wartung von Maschinen übernimmt. Durch die Analyse großer Datenmengen kann Machine Learning auch dabei helfen, Muster und Trends zu erkennen, um Prozesse effizienter zu gestalten. Zudem kann die Technologie dazu beitragen, die Produktivität zu steigern und Kosten zu senken.
-
Wie beeinflusst Machine Learning die Entwicklung von künstlicher Intelligenz?
Machine Learning ist ein Teilgebiet der künstlichen Intelligenz, das es Computern ermöglicht, aus Daten zu lernen und Muster zu erkennen. Durch Machine Learning können Algorithmen verbessert und optimiert werden, um intelligenter zu werden. Somit trägt Machine Learning maßgeblich zur Weiterentwicklung und Verbesserung von künstlicher Intelligenz bei.
-
Warum Deep Learning im Vergleich zu Machine Learning?
Deep Learning unterscheidet sich von Machine Learning durch seine Fähigkeit, automatisch Merkmale aus den Daten zu extrahieren, anstatt dass diese manuell definiert werden müssen. Dadurch ist Deep Learning in der Lage, komplexere und abstraktere Muster in den Daten zu erkennen und zu lernen. Dies ermöglicht es Deep Learning-Modellen, in vielen Anwendungsbereichen, wie Bild- und Spracherkennung, bessere Leistungen zu erzielen als herkömmliche Machine Learning-Modelle.
Ähnliche Suchbegriffe für Machine Learning:
-
Bartok, Larissa: Anwendung statistischer und Machine-Learning-Methoden für Fragestellungen zu Studienerfolg
Anwendung statistischer und Machine-Learning-Methoden für Fragestellungen zu Studienerfolg , Analytics-Instrumente können dabei helfen, mehr über den Lern- und Studienerfolg von Studierenden herauszufinden und geeignete Maßnahmen zur Unterstützung von Studierenden abzuleiten. Zwei Projekte, die sich Fragen zum Thema Studienerfolg widmen, wurden vom österreichischen BMBWF im Rahmen der Ausschreibung "Digitale und soziale Transformation in der Hochschulbildung" kofinanziert. Die beiden Projekte "Learning Analytics- Studierende im Fokus" und "PASSt - Predictive Analytics Services für Studienerfolgsmanagement" fokussieren auf unterschiedliche Handlungsfelder und wurden zur Generierung von Synergieeffekten konzeptionell verzahnt, indem generische Herausforderungen gemeinsam bearbeitet und Lessons-Learned diskutiert wurden. Die Erkenntnisse der gemeinsamen Arbeitsgruppe mündeten in diese Arbeit, die Rahmen- und Gelingensbedingungen von Analytics-Projekten thematisiert, und anhand von exemplarischen Anwendungsszenarien eine Unterstützung bei der Implementierung bieten kann. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen
Preis: 27.90 € | Versand*: 0 € -
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (Géron, Aurélien)
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow , This best-selling book uses concrete examples, minimal theory, and production-ready Python frameworks--scikit-learn, Keras, and TensorFlow--to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. , > , Auflage: 3rd Edition, Erscheinungsjahr: 202211, Produktform: Kartoniert, Autoren: Géron, Aurélien, Auflage: 23003, Auflage/Ausgabe: 3rd Edition, Themenüberschrift: COMPUTERS / Computer Vision & Pattern Recognition~COMPUTERS / Natural Language Processing~COMPUTERS / Neural Networks, Fachschema: Database~Datenbank~Fuzzy Logik - Fuzzy Set~Intelligenz / Künstliche Intelligenz~KI~Künstliche Intelligenz - AI~Lernen~Mustererkennung~Neuronales Netz - Neuronaler Computer - Neurocomputer~Übersetzung, Fachkategorie: Neuronale Netze und Fuzzysysteme~Mustererkennung~Maschinelles Sehen, Bildverstehen, Text Sprache: eng, Verlag: O'Reilly Media, Verlag: O'Reilly Media, Länge: 233, Breite: 186, Höhe: 52, Gewicht: 1511, Produktform: Kartoniert, Genre: Importe, Genre: Importe, Vorgänger: 2654375, Vorgänger EAN: 9781492032649 9781491962299, Katalog: LIB_ENBOOK, Katalog: Gesamtkatalog, Katalog: Internationale Lagertitel, Katalog: internationale Titel, Katalog: Kennzeichnung von Titeln mit einer Relevanz > 30, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0080, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel,
Preis: 72.36 € | Versand*: 0 € -
Ekman, Magnus: Learning Deep Learning
Learning Deep Learning , NVIDIA's Full-Color Guide to Deep Learning: All StudentsNeed to Get Started and Get Results Learning Deep Learning is a complete guide to DL.Illuminating both the core concepts and the hands-on programming techniquesneeded to succeed, this book suits seasoned developers, data scientists,analysts, but also those with no prior machine learning or statisticsexperience. After introducing the essential building blocks of deep neural networks, such as artificial neurons and fully connected, convolutional, and recurrent layers,Magnus Ekman shows how to use them to build advanced architectures, includingthe Transformer. He describes how these concepts are used to build modernnetworks for computer vision and natural language processing (NLP), includingMask R-CNN, GPT, and BERT. And he explains how a natural language translatorand a system generating natural language descriptions of images. Throughout, Ekman provides concise, well-annotated code examples usingTensorFlow with Keras. Corresponding PyTorch examples are provided online, andthe book thereby covers the two dominating Python libraries for DL used inindustry and academia. He concludes with an introduction to neural architecturesearch (NAS), exploring important ethical issues and providing resources forfurther learning. Exploreand master core concepts: perceptrons, gradient-based learning, sigmoidneurons, and back propagation See how DL frameworks make it easier to developmore complicated and useful neural networks Discover how convolutional neuralnetworks (CNNs) revolutionize image classification and analysis Apply recurrentneural networks (RNNs) and long short-term memory (LSTM) to text and othervariable-length sequences Master NLP with sequence-to-sequence networks and theTransformer architecture Build applications for natural language translation andimage captioning , >
Preis: 49.28 € | Versand*: 0 € -
Maschinelles Lernen (Frochte, Jörg)
Maschinelles Lernen , Maschinelles Lernen ist ein interdisziplinäres Fach, das die Bereiche Informatik, Mathematik und das jeweilige Anwendungsgebiet zusammenführt. In diesem Buch werden alle drei Teilgebiete gleichermaßen berücksichtigt: - Algorithmen des maschinellen Lernens verwenden und verstehen, wie und warum sie funktionieren. - Kickstart zur Verwendung von Python 3 und seinem Ökosystem im Umfeld des maschinellen Lernens. - Verschiedene Methoden des überwachten, unüberwachten und bestärkenden Lernens, u.a. Random Forest, DBSCAN und Q-Learning. Die Algorithmen werden zum besseren Verständnis und praktischen Einsatz anschaulich mittels NumPy und SciPy umgesetzt. Für die Support Vector Machines und das Deep Learning wird auf scikit-learn bzw. Keras zurückgegriffen. Die dritte Auflage wurde für die Keras/Tensorflow-Version 2 sowie Python 3.7 überarbeitet, mehrere Kapitel insbesondere zum bestärkten Lernen wurde aktualisiert und folgende Themen wurden unter anderem neu aufgenommen: - Deep Q-Learning - Class Activation Maps und Grad-CAM - Pandas-Integration und -Einführung - OpenAI Gym integriert Das Buch ist ideal für Studierende der Informatik, Mechatronik, Elektrotechnik und der angewandten Statistik/Data Science sowie für Ingenieure und Informatiker in der Praxis. Vorausgesetzt werden Kenntnisse in objektorientierter Programmierung und Basiswissen der Hochschulmathematik. Die nötige Mathematik wird eingebettet im Buch präsentiert und die Theorie direkt in Python-Code umgesetzt. , Bücher > Bücher & Zeitschriften , Auflage: 3., überarbeitete und erweiterte Auflage, Erscheinungsjahr: 20201120, Produktform: Kassette, Inhalt/Anzahl: 1, Inhalt/Anzahl: 1, Autoren: Frochte, Jörg, Auflage: 21003, Auflage/Ausgabe: 3., überarbeitete und erweiterte Auflage, Seitenzahl/Blattzahl: 616, Keyword: artificial intelligence basics; artificial intelligence machine learning; künstliche intelligenz ai; künstliche intelligenz programmieren; künstliche intelligenz verstehen; machine learning book; machine learning python; maschinelles lernen anfänger; maschinelles lernen grundlagen; maschinelles lernen python; selbstlernende ki; selbstlernende systeme, Fachschema: Wahrscheinlichkeitsrechnung~Intelligenz / Künstliche Intelligenz~KI~Künstliche Intelligenz - AI, Bildungszweck: für die Hochschule, Fachkategorie: Maschinelles Lernen, Thema: Verstehen, Text Sprache: ger, Sender’s product category: BUNDLE, Verlag: Hanser Fachbuchverlag, Verlag: Hanser Fachbuchverlag, Verlag: Hanser, Carl, Verlag GmbH & Co. KG, Länge: 241, Breite: 177, Höhe: 40, Gewicht: 1167, Produktform: Gebunden, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Beinhaltet: B0000059240001 B0000059240002, Beinhaltet EAN: 9783446913387 9783446913394, Vorgänger EAN: 9783446459960 9783446452916, eBook EAN: 9783446463554, Herkunftsland: DEUTSCHLAND (DE), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Kennzeichnung von Titeln mit einer Relevanz > 30, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0050, Tendenz: +1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel, WolkenId: 1788644
Preis: 39.99 € | Versand*: 0 €
-
Wie kann man sich selbst Machine Learning, Künstliche Intelligenz und Natural Language Processing beibringen?
Um sich selbst Machine Learning, Künstliche Intelligenz und Natural Language Processing beizubringen, gibt es verschiedene Möglichkeiten. Man kann Online-Kurse und Tutorials nutzen, um die Grundlagen zu erlernen und praktische Erfahrungen zu sammeln. Es ist auch hilfreich, an Projekten zu arbeiten und mit vorhandenen Tools und Bibliotheken zu experimentieren. Zudem kann der Austausch mit anderen Fachleuten in Foren und Communitys dabei helfen, Fragen zu klären und neue Ideen zu entwickeln.
-
Wie können moderne Technologien wie Machine Learning und künstliche Intelligenz zur Automobilanalyse eingesetzt werden?
Moderne Technologien wie Machine Learning und künstliche Intelligenz können zur Automobilanalyse eingesetzt werden, um große Mengen von Daten zu verarbeiten und Muster zu erkennen. Sie können dabei helfen, Fahrzeugdiagnosen schneller und genauer durchzuführen sowie präventive Wartungsmaßnahmen vorherzusagen. Zudem können sie zur Verbesserung der Fahrzeugsicherheit und Effizienz beitragen, indem sie Verkehrsdaten analysieren und Fahrerassistenzsysteme optimieren.
-
Was ist Python Machine Learning?
Python Machine Learning bezieht sich auf die Verwendung von Python-Programmierung, um maschinelles Lernen zu implementieren. Dabei werden Algorithmen und Modelle erstellt, die es Computern ermöglichen, aus Daten zu lernen und Vorhersagen zu treffen. Python bietet eine Vielzahl von Bibliotheken wie Scikit-learn, TensorFlow und Keras, die das Entwickeln von Machine-Learning-Anwendungen erleichtern. Mit Python Machine Learning können komplexe Probleme gelöst und Muster in großen Datenmengen entdeckt werden.
-
Hat Machine Learning wirklich etwas mit künstlicher Intelligenz zu tun?
Ja, Machine Learning ist ein Teilgebiet der künstlichen Intelligenz. Es befasst sich mit der Entwicklung von Algorithmen und Modellen, die es Computern ermöglichen, aus Daten zu lernen und Vorhersagen oder Entscheidungen zu treffen. Machine Learning ist eine Methode, um künstliche Intelligenz zu erreichen, indem Computer in der Lage sind, Aufgaben zu erlernen und auszuführen, für die normalerweise menschliche Intelligenz erforderlich ist.
* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.